
C H A P T E R T E N

Implementing Programming
Languages

10.1 Introduction

The Scheme system you’ve been using as you work through this book is itself a
program, one that repeatedly reads in an expression, evaluates it, and prints out the
value. The main procedure in this system is a read-eval-print loop. In this chapter,
we’ll see how such a system could have been written by building a read-eval-print
loop for a somewhat stripped down version of Scheme we call Micro-Scheme.

The previous paragraph announced without any fanfare one of the deepest truths
of computer science: The fully general ability to perform any computation what-
soever is itself one specific computation. The read-eval-print loop, like any other
procedure, performs the one specialized task it has been programmed to do. How-
ever, its specific task is to do whatever it is told, including carrying out any other
procedure. It exemplifies the universality principle:

The universality principle: There exist universal procedures (such as the read-
eval-print loop) that can perform the work of any other procedure. Like any
other procedure, they are specialized, but what they specialize in is being fully
general.

In the next section, we’ll first describe exactly what Micro-Scheme expressions
look like by using a special notation called Extended Backus-Naur Form. In the third
section, we’ll build the read-eval-print loop for Micro-Scheme. Because definitions
are among the features of Scheme missing from Micro-Scheme, there is no con-
venient way to create recursive procedures. To overcome this, in the fourth section

278

Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight

10.2 Syntax 279

we’ll add global definitions to Micro-Scheme, resulting in Mini-Scheme. Finally,
in the application section at the end of the chapter you’ll have the opportunity to
modify the Mini-Scheme system so that it prints out each of the steps involved in
evaluating the main problem, each subproblem, sub-subproblem, etc., much like
the diagrams from the early chapters. That way, you’ll have a useful tool for helping
to understand Scheme evaluation.

Before launching into the development of Micro-Scheme, let’s consider why we
would want to build a Scheme system when we already have one available:

As mentioned in the preceding paragraph, in the application section you’ll add
explanatory output that is helpful in understanding Scheme evaluation. Adding
this output to the Scheme system you’ve been using would probably not be as
easy.
In fact, even without adding any explanatory output, you’ll probably come to
understand Scheme evaluation better, simply by getting an insider’s perspective
on it.
You’ll also be able to experiment with changes in the design of the programming
language. For example, if you have been wishing that Scheme had some feature,
now you’ll have the opportunity to add it.
You’ll even be in a good position to implement a whole new programming lan-
guage that isn’t a variant of Scheme at all. Many of the general ideas of program-
ming language implementation are independent of the specific language being
implemented. The main reason why this chapter is focused on the nearly circu-
lar implementation of Mini-Scheme in Scheme is simply to avoid introducing
another language for you to understand.

10.2 Syntax

The read-eval-print loop for Micro-Scheme uses many of the ideas from the movie
query application in Section 7.6. There, we had a procedure, query-loop, that read
in a query, matched it to one of a variety of patterns, took the appropriate action, and
printed the result. Here, we have a loop that reads in an expression and uses a similar
matching algorithm to determine what kind of expression it has. This information is
then used to compute and print the value of the expression.

Recall that in the query loop, we knew that there would be some queries that
didn’t match any of the patterns in our database. Similarly, in the Micro-Scheme
loop, there will be expressions that don’t match any of the valid forms for Micro-
Scheme expressions. For example, the expression (if (not (= x 0)) (/ 2 x)
(display "tried to divide by 0") 17) is not a valid Micro-Scheme expres-
sion because there are four expressions following the symbol if and only three are
allowed. Expressions that don’t have a valid form are said to be syntactically incorrect;

280 Chapter 10 Implementing Programming Languages

those that are well formed are, of course, syntactically correct. Note that the em-
phasis is on form; for example, the expression (3 2) is syntactically correct because
2 and 3 are both valid expressions, and any collection of one or more valid expres-
sions surrounded by parentheses is also a valid expression. However, that expression
doesn’t have any meaning or value. Such an error is called a semantic error.

The input to the movie query system was fairly easy to specify—it was a list of
symbols—but the input to the Micro-Scheme read-eval-print loop has considerably
more structure. Micro-Scheme is just a stripped down version of Scheme; essentially
it has all the features of Scheme that we’ve seen up until now except define, cond,
let, and, or, and most of the built-in Scheme procedures. This means that a Micro-
Scheme expression could be a symbol, a constant (i.e., a number, boolean, or string),
or a list of Micro-Scheme expressions and keywords. The keywords are the special
symbols if, lambda, and quote; we’ll say more about quote, which you haven’t
previously seen, in a bit. Not everything a Micro-Scheme user types in is going to be
a valid Micro-Scheme expression, so we’ll call each input to the read-eval-print loop
a potential Micro-Scheme expression, or PMSE for short. We can give a recursive
definition of a PMSE:

PMSE: A PMSE is a symbol, a number, a string, a boolean, or a list of PMSEs.

The main task of this section is to describe which PMSEs are actually Micro-
Scheme expressions. To do this, we’ll use a concise notation called EBNF that is
commonly used for defining the syntax of formal languages, such as programming
languages. The name EBNF stands for Extended Backus-Naur Form, because this
notation is an extension to a form of syntax definition that John Backus developed and
Peter Naur popularized by using it in the published definition of the programming
language Algol, which he edited.

EBNF is one example of a notation for language grammars, which specify how
syntactic categories are recursively structured. The basic idea is to be able to say
things like “any collection of one or more expressions surrounded by parentheses is
also an expression,” which is an inherently recursive statement. The only difference
is that rather than saying it in English, we have a notation for saying it that is both
more precise and more concise. Regarding precision, notice that the English version
could be misread as saying that each of the individual expressions is surrounded
by parentheses, rather than the whole collection. Regarding concision, here is the
EBNF version:

kexpressionl −→ (kexpressionl1)

This collection of symbols with an arrow in it is called a production of the grammar.
The arrow separates the production into two sides, the left-hand and the right-hand
sides. The word kexpressionl with the angle brackets around it is a syntactic category

10.2 Syntax 281

name or nonterminal. A grammar is a collection of productions that is used to define
one specific syntactic category; for Micro-Scheme it would be kexpressionl. However,
along the way we may want to define other syntactic categories, such as kconditionall.
The meaning of a production is that the right-hand side specifies one form that is
permissible for the syntactic category listed on the left-hand side. For example, the
above production gives one form that an kexpressionl can have.

The parentheses in the example production’s right-hand side are necessary symbols
that must appear in any kexpressionl of that form; these are called terminal symbols.
For another example, the production

kexpressionl −→ (if kexpressionl kexpressionl kexpressionl)

contains the keyword if as a terminal symbol as well as the parentheses.
At this point we have two productions for kexpressionl, because we have given

two different forms that kexpressionls can have. This is normal; many syntactic
categories will be specified by a collection of productions specifying alternative
forms the category can have. The grammar is easier to read if all the productions for
a particular category are grouped together; a notational shorthand is generally used
for this. In the case of our two productions for kexpressionl, this shorthand notation
would be as follows:

kexpressionl −→ (kexpressionl1)
| (if kexpressionl kexpressionl kexpressionl)

The vertical bar is used to indicate that another production for the same left-hand
side follows. Any number of productions can be grouped together in this way. If the
right-hand sides are short, they can be listed on the same line, as follows:

kdigitl −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Note, incidentally, that none of these productions for kdigitl contains any nonter-
minal symbols on the right-hand side. Every grammar must have some productions
like that to provide the base case for the recursion inherent in grammars.

The first production given for kexpressionl had a superscript plus sign in its
right-hand side; this is a special notation that means “one or more.” In particular,
kexpressionl1 is the EBNF way to say “one or more kexpressionls,” which was used
to say that one form an kexpressionl can have is a pair of parentheses surrounding
one or more kexpressionsls.

There is another very similar notation that can be used to say “zero or more.” For
example, suppose we want to specify the syntax of lambda expressions. We’ll limit
the body to a single kexpressionl but will allow the parameter list to have zero or
more knamels in it so that we can have procedures with any number of parameters,
including parameterless procedures. This would be expressed as follows:

282 Chapter 10 Implementing Programming Languages

kexpressionl −→ (lambda (knamel*) kexpressionl)

The general rule is that a syntactic category name with a superscript asterisk indicates
zero or more instances of the category, whereas a syntactic category name with a
superscript plus sign indicates one or more instances of the category.

Now that we have the basics of EBNF, we can use it to describe all of Micro-
Scheme. Recall that Micro-Scheme is a stripped-down version of Scheme; specifi-
cally, it includes many of the features of Scheme that we’ve seen up until now. The
basic syntactic category in Micro-Scheme is the expression.

kexpressionl −→ knamel | kconstantl | kconditionall | kabstractionl
| kapplicationl

kconstantl −→ kliterall | kquotationl

kliterall −→ knumberl | kbooleanl | kstringl

kconditionall −→ (if kexpressionl kexpressionl kexpressionl)

kabstractionl −→ (lambda (knamel*) kexpressionl)

kquotationl −→ (quote kdatuml)

kapplicationl −→ (kexpressionl1)

knamel −→ any symbol allowed by the underlying Scheme except lambda, quote,
and if

knumberl −→ any number allowed by the underlying Scheme
kstringl −→ any string allowed by the underlying Scheme
kbooleanl −→ any boolean allowed by the underlying Scheme
kdatuml −→ any datum allowed by the underlying Scheme

You will notice that there are five syntactic categories at the end of the grammar
that are defined in terms of the underlying Scheme. The last one, kdatuml, includes
the other four as well as lists and a couple other Scheme types we have not yet
discussed; specifically, kdatuml consists of everything that Scheme will successfully
read using the built-in read procedure. In fact, the main reason that we describe
knamels, knumberls, kstringls, kbooleanls, and kdatumls in terms of the underlying
Scheme is that we’re using the built-in read procedure for reading in the PMSEs.
Once we’ve read in a PMSE, the underlying Scheme has it all nicely packaged for
us so we can tell if it’s a symbol, a number, a boolean, a string, a list, or none of the
above simply by using predicates such as symbol?, number?, and so on.

10.2 Syntax 283

Our grammar provides two ways to specify a kconstantl. One is as a kliterall, such
as 31, #t, or "hello". The other way is as a kquotationl, such as (quote x) or
(quote (1 2)). In normal Scheme, you are used to seeing quotations written a
different way, as ’x or ’(1 2), which is really just a shorthand notation; when the
read procedure sees ’x in the input, it returns the list (quote x).

Finally, you’ll notice that we used an unfamiliar name for the syntactic category
of lambda expressions: We called them kabstractionls. We didn’t want to name
the syntactic category klambda-expressionl because that would be naming it after
the keyword occurring in it—naming it after what the expressions look like rather
than after their meaning. (An analogy would be if we had named kapplicationls
“parenthesized expressions” because they have parentheses around them, rather
than focusing on the fact that they represent the application of a procedure to its
arguments.) We didn’t want to call these expressions kprocedurels either because a
procedure is the value that results from evaluating such an expression, and we want
to distinguish the expression from the value. There is a long tradition of calling this
kind of expression an abstraction, so we adopted this name.

Exercise 10.1

The categories knumberl, kstringl, and kbooleanl are directly testable by the corre-
sponding Scheme procedures number?, string?, and boolean?, but knamel does
not have an exact Scheme correlate. You will write one in this exercise.

a. Recall that the symbols lambda, quote, and if that are disallowed as names
because of their special usage in Micro-Scheme are called keywords. Write a
predicate keyword? that tests whether its argument is a keyword.

b. Write the predicate name?. You will need to use the built-in Scheme procedure
symbol?.

Exercise 10.2

Even when a category is directly testable by Scheme, using EBNF to express it at a
more primitive level can help you appreciate the expressive power of EBNF. In this
exercise you will use EBNF to describe certain kinds of numbers—a small subset of
those allowed by Scheme.

a. Write a production for kunsigned-integerl. You can use the productions for kdigitl
given above.

b. Next write productions for kintegerl; an kintegerl may start with a - sign, a + sign,
or neither.

c. Finally, write productions for kreal-numberl, which are (possibly) signed numbers
that may have a decimal point. Note that if the real number has a decimal point,

284 Chapter 10 Implementing Programming Languages

there must be at least one digit to the left or to the right (or both) of the decimal
point. Thus, 243., .43, 43, 143.21, and 43.0 are all valid real numbers.

Exercise 10.3

In Section 8.3 we considered expression trees for simple arithmetic expressions.
All such expressions are either numbers or lists having an operator (one of +, -,
*, or /) and two operands. Actually, there are three important variants, depending
on where the operator occurs: in the first position (prefix or Scheme notation),
the second position (infix or standard notation), or the third position (postfix, also
known as Reverse Polish notation, or RPN). Let’s consider how such expressions can
be specified using EBNF.

a. Write productions for karithmetic-prefix-expressionl.
b. Write productions for karithmetic-infix-expressionl.
c. Write productions for karithmetic-postfix-expressionl.
d. As noted in Section 8.3, a postorder traversal of an expression tree re-

sults in a list of the nodes that is identical to the language specified by
karithmetic-postfix-expressionl, except that subexpressions are not parenthesized.
Revise the productions for karithmetic-postfix-expressionl so that subexpressions
are not parenthesized. (The overall top-level expression needn’t be parenthesized
either.)

Exercise 10.4

Let’s consider two possible additions to our Micro-Scheme grammar involving regular
Scheme expressions.

a. Write a production for let expressions. Remember that let expressions allow zero
or more bindings (i.e., parenthesized name/expression pairs), and the body of the
let contains one or more expressions. You should define a separate syntactic
category for kbindingl.

b. Write productions for cond expressions. Remember that cond expressions allow
one or more branches, the last of which may be an else, and each branch has
one or more expressions following the test condition.

Exercise 10.5

Our grammar for Micro-Scheme says that an kapplicationl is of the form
(kexpressionl1). Some authors prefer to instead say that it is of the form (kexpressionl

10.2 Syntax 285

kexpressionl*), even though this is longer and is equivalent. Speculate why it might
be preferred.

We can use the productions for kexpressionl to determine whether or not (+ 2 3)
is a syntactically valid Micro-Scheme expression. Because it matches the production
for an kapplicationl, it will be a valid Micro-Scheme expression if and only if +,
2, and 3 are valid. Now, + is a symbol in Scheme and not a keyword, so it is a

The Expressiveness of EBNF

If we weren’t allowed to use the superscript asterisk and plus sign in EBNF, we
wouldn’t lose anything in terms of the power of the notation: We could still
represent all the same language constructs, just using recursion. For example,
rather than

kapplicationl −→ (kexpressionl1)

we could write

kapplicationl −→ (kexpressionsl)

kexpressionsl −→ kexpressionl
| kexpressionsl kexpressionl

As the above example shows, although the superscripted asterisk and plus sign
don’t add anything to the range of languages the EBNF notation can describe,
they do contribute to keeping our grammars short and easy to understand.

Having seen what happens if we eliminate the “repetition” constructs and rely
only on recursion, now let’s consider the reverse. Suppose we forbid all use of
recursion in EBNF but allow the superscript asterisk and plus sign. We have to
be clear what it means to rule out recursion: Not only are we forbidding syntactic
categories from being directly defined in terms of themselves (as kexpressionsl
is in the preceding), but we are also forbidding indirect recursions, such as the
definition of kexpressionl in terms of kapplicationl, which is itself defined in terms
of kexpressionl. This restriction cuts into the range of languages that is specifiable.
For example, consider the language specified by the following recursive EBNF
grammar:

kparensl −→ ()
| (kparensl)

(Continued)

286 Chapter 10 Implementing Programming Languages

The Expressiveness of EBNF (Continued)

Any string of one or more left parentheses followed by the same number of
right parentheses is a kparensl. Suppose we have a nonrecursive grammar that
also matches all these strings (but possibly others as well). Consider a very long
string of left parentheses followed by the same number of right parentheses. If
the string is long relative to the size of the nonrecursive grammar, the only
way this can happen is if the asterisk or plus sign is being used at some point to
match a repeated substring. The part being repeated has to contain either only left
parentheses or only right parentheses because otherwise its repetition would cause
a right parenthesis to come before a left parenthesis. However, if the repeated part
contains only one kind of parenthesis, and if we simply repeat that part more times
(which the asterisk or plus sign allows), we’ll wind up with an imbalance between
the number of left and right parentheses. Thus the nonrecursive grammar, if it
matches all the strings that kparensl does, must match some other strings as well
that kparensl doesn’t; in other words, we’ve got a language that can be specified
using a recursive grammar but not a nonrecursive one.

Even with recursion allowed, EBNF isn’t the ultimate in language specification;
it can’t specify some very simple languages. For example, suppose we want the
language to allow any number of left parentheses followed by the same number
of letter a’s followed by the same number of right parentheses. For example, (a)
and ((aa)) would be legal but ((a)) and ((aa) wouldn’t be. There is no way
to specify this language using EBNF. Even sketching the proof of this would go
beyond the scope of this book, but you’ll see it in a course on formal languages
and automata theory. Such courses, also sometimes called “mathematical theory
of computation” or “foundations of computation,” go into more details on the
other issues we covered in this sidebar and cover related topics as well.

knamel in Micro-Scheme, and thus + is a valid Micro-Scheme expression. Similarly,
2 and 3 are numbers, so they are Micro-Scheme kconstantls. Thus, they too are valid
Micro-Scheme expressions. Hence, the whole expression (+ 2 3) is also valid.

Exercise 10.6

Determine which of the following PMSEs are syntactically valid Micro-Scheme
expressions and explain why.

a. (if 3 1 5)

b. (lambda x (+ x 2))

c. (((a ((b))) c))

10.2 Syntax 287

d. (lambda (lambda) 3)

e. (lambda () lambda)

f. (lambda (x) (if (> x 0) x (- x) 0))

g. (lambda () x)

h. (lambda ())

i. (/)

j. (#t #f)

As you did the exercise above, you probably matched a PMSE against the pro-
ductions for a Micro-Scheme kexpressionl. Whenever you found a match, you took
the various parts of the PMSE and checked to see whether they were valid as well.
Note that this is a form of pattern-matching similar to what you did in Section 7.6
to determine the form of a query in the movie query system.

We can use the pattern-matching mechanism from Section 7.6 to determine
whether or not a PMSE is a syntactically correct Micro-Scheme expression. In par-
ticular, we’ll use the procedures matches? and substitutions-in-to-match,
together with a pattern/action list appropriate for Micro-Scheme. This list will
have one pattern/action pair for each kind of compound expression—kconditionall,
kabstractionl, and kapplicationl. The matching will determine whether or not a
PMSE has the correct number of “sub-PMSEs” in the correct places, and the ac-
tions will check to see if these sub-PMSEs are valid expressions. The pattern/action
list will also take care of kquotationls, whereas we’ll have to use separate checks
to determine whether or not we have one of the simplest kinds of Micro-Scheme
expressions, knamel and kliterall, neither of which has any sub-PMSE.

Here, then, is the code for a syntax checking predicate syntax-ok?, together
with the pattern/action list. The procedure all-are is a higher-order procedure
from Exercise 7.49 on page 208. It takes a predicate, such as name? or syntax-ok?,
and returns a procedure that determines whether or not everything in a list satisfies
the original predicate. Thus, for example, the action for the pattern starting with
lambda includes a check that all of the parameters are really names.

(define syntax-ok?

(lambda (pmse)

(define loop ;main procedure is on next page

(lambda (p/a-list)
(cond ((null? p/a-list) #f)

((matches? (pattern (car p/a-list)) pmse)

(apply (action (car p/a-list))

(substitutions-in-to-match

(pattern (car p/a-list))

pmse)))

(else (loop (cdr p/a-list)))))) ;end of loop

288 Chapter 10 Implementing Programming Languages

(cond ((or (number? pmse) ;main syntax-ok? procedure

(string? pmse)
(boolean? pmse)) ;pmse is a literal

#t)

((name? pmse) #t)

((list? pmse) ;try matching it against the patterns

(loop micro-scheme-syntax-ok?-p/a-list))

(else #f))))

(define micro-scheme-syntax-ok?-p/a-list

(list

(make-pattern/action ’(if _ _ _)
(lambda (test if-true if-false)

(and (syntax-ok? test)

(syntax-ok? if-true)

(syntax-ok? if-false))))

(make-pattern/action ’(lambda _ _)

(lambda (parameters body)

(and (list? parameters)

((all-are name?) parameters)

(syntax-ok? body))))

(make-pattern/action ’(quote _)
(lambda (datum) #t))

(make-pattern/action ’(...) ; note that this *must* come last

(lambda (pmses)

((all-are syntax-ok?) pmses)))))

Let’s look at what happens if we call syntax-ok? on a list-structured PMSE,
say, (if 3 1 5). This PMSE will match the first pattern in the pattern/action list
because (if 3 1 5) is a list with four elements and the first element is the symbol
if. The last three elements in the PMSE are the test expression, the expression to
evaluate if the test expression is true, and the expression to evaluate if the test is false.
The action that corresponds to this pattern is to recursively check to see if all three
of these expressions are really well-formed Micro-Scheme expressions by using the
procedure syntax-ok? and the special form and.

In the example above a mutual recursion occurs between syntax-ok? and the
action procedures, much like with even-part and odd-part in Section 7.5. That
is, syntax-ok? doesn’t directly invoke itself to check the validity of sub-PMSEs
but rather invokes an action procedure that in turn invokes syntax-ok? on the
sub-PMSEs. Because this will in general result in more than one recursive call
to syntax-ok? (for example, conditionals result in three recursive calls), the net

10.3 Micro-Scheme 289

result is tree recursion. Micro-Scheme expressions have a tree-like structure similar
to the expression trees in Section 8.3. The tree recursion resulting from a call to
syntax-ok? exactly parallels the tree-like structure of the given PMSE.

Exercise 10.7

Why does the mutual recursion between syntax-ok? and the action procedures
eventually stop when we check the syntax of (if 3 1 5)? Why will it eventually
stop on any list-structured PMSE?

Exercise 10.8

What happens if the PMSE being checked is the empty list?

Note that there are plenty of syntactically valid Micro-Scheme expressions that are
nevertheless completely nonsensical: consider, for example, (1 5). This expression
is a syntactically valid Micro-Scheme expression (and a syntactically valid Scheme
one, too), but it doesn’t have a value, because the value of 1 is the number 1, not a
procedure. The point is that this expression has the correct form for Micro-Scheme
expressions, and form is the only thing that EBNF specifies. The big gain with EBNF
is that the productions for a language translate fairly simply into a syntax checker
such as syntax-ok?. In the next section, we’ll see that the same productions can
also serve as the basis for categorizing expressions and identifying their parts in
preparation for evaluating them.

Finally, we make one important remark concerning the structure of the pat-
tern/action list. Note that the first three patterns in the pattern/action list describe
list-structured PMSEs that can be identified by their size and their first element.
Because of the way the pattern/action list is structured, any other nonempty list is
considered to be an application. When we extend Micro-Scheme by adding new
productions, we will want to maintain this property by keeping the pattern for appli-
cations at the end of the pattern/action list.

10.3 Micro-Scheme

Now that we know the syntax for Micro-Scheme, we can build a read-eval-print loop
for it. The Micro-Scheme read-eval-print loop itself is quite straightforward:

(define read-eval-print-loop
(lambda ()
(display ";Enter Micro-Scheme expression:")
(newline)
;;(continued)

290 Chapter 10 Implementing Programming Languages

(let ((expression (read)))
(let ((value (evaluate (parse expression))))
(display ";Micro-Scheme value: ")
(write value)
(newline)))

(read-eval-print-loop)))
Each expression is read in with read, then parsed and evaluated, and finally the value
is written back out using write, with some frills provided by newline and display.
(The built-in procedure write is just like display except for some details such as
providing double quote marks around strings. That way you can see the difference
between the string "foo" and the symbol foo, unlike when they are displayed.)

The core of this read-eval-print loop is a two-step process that uses the two proce-
dures parse and evaluate. In order to understand the separate tasks of these two
procedures, let’s first consider the arithmetic expressions described in Exercise 10.3.
No matter which way we denote arithmetic expressions (infix, prefix, and postfix),
each expression gives rise to a unique expression tree, as described in Section 8.3.
Parsing is the process of converting an actual expression to the corresponding ex-
pression tree. But why should we go through this intermediate stage (the expression
tree) rather than simply evaluating the expression directly? Separating the parsing
from the evaluation allows us to make changes in the superficial form or syntax of
expressions (such as whether we write our arithmetic expressions in prefix, infix, or
postfix) without needing to change the evaluation procedure. Furthermore, evalua-
tion itself is made easier, because the expression tree data type can be designed for
ease of evaluation rather than for ease of human writing.

Arithmetic expressions are considerably simpler than Micro-Scheme expressions
in one sense, however. Namely, there were only two kinds of nodes in our expression
trees: constants, which were leaves, and operators, which were internal nodes. We
needed to distinguish between constants and operators in Section 8.3’s evaluate
procedure, but all internal nodes were treated the same way: by looking up and
applying the specified Scheme procedure.

If you think instead about how Micro-Scheme works, it would be natural for
expression trees to have two kinds of leaves, corresponding to the syntactic categories
knamel and kconstantl. Each of these will need to be evaluated differently. Similarly,
there are three natural candidates for kinds of internal nodes, corresponding to
kconditionall, kabstractionl, and kapplicationl, because these syntactic categories have
subexpressions that would correspond to subtrees. Again, the way each of these
expressions is evaluated depends on what kind of expression it is. For example, think
about the difference between the way (+ (square 2) (square 3)) is evaluated
and the way (if (= x 0) 1 (/ 5 x)) is. Because we need to know what kind
of expression we have in order to evaluate it, parsing must identify and mark what
sort of expression it is considering and break it down into its component parts. In
our example above, the expression (+ (square 2) (square 3)) is an application,

10.3 Micro-Scheme 291

whose operator is + and whose operands are (square 2) and (square 3). Each
of these operands is itself an application with an operator, which is square, and an
operand, which is either 2 or 3.

So, the value of parse will be a tree-structured data type, which is typically called
an Abstract Syntax Tree, or AST. The AST for an expression indicates what kind
of expression it is and what its components are. Furthermore, the components are
themselves typically ASTs. The evaluation process itself can be carried out on the
AST rather than the original expression; as described above, this approach has the
advantage that if the language is redesigned in ways that change only the superficial
syntax of expressions, only parse (not evaluate) needs to be changed.

ASTs are an abstract data type, which means we shouldn’t worry too much for
now about how they are represented (what they “look like”) so long as they provide
the appropriate operations, notably the evaluate operation. However, it is easier
to think about ASTs if you have something concrete you can think about, so we
will present here a pictorial version of ASTs that you can use when working through
examples with paper and pencil. Each AST is visually represented as a tree whose root
node has a label indicating what kind of AST it is. The leaf nodes, which correspond
to the syntactic categories knamel and kconstantl, are fairly simple. For example,

name: +

Name

is the name AST corresponding to the name +, and value: 2

Constant

is the constant AST corresponding to 2. Note that in addition to the labels (that
designate their syntactic categories Name and Constant), both of these ASTs contain
information specifying which particular name or constant they represent (name: +
and value: 2).

The other three syntactic categories (kconditionall, kabstractionl, and
kapplicationl) correspond to internal nodes because they each contain subexpressions
that themselves result in ASTs. In contrast to the expression trees in Section 8.3,
which always had exactly two children, the number of children of an internal node
in these ASTs will vary. This number depends partially on the syntactic category;
for example, the root node corresponding to the category kconditionall will always
have three children: one each for the test, if-true, and if-false subexpressions. On the
other hand, the number of children of the root node corresponding to the category
kapplicationl varies: The operator is one child, and the operands are the others.

First consider the kapplicationl category. If we parse the Micro-Scheme expression
(+ 2 3), we get the following application AST:

name: +

Name

value: 3

Constant

Application

value: 2

Constant

292 Chapter 10 Implementing Programming Languages

The three children are the ASTs corresponding to the three subexpressions of the
expression. The leftmost child corresponds to the operator +, which is a name AST,
and the other children correspond to the two operands; we put a curved line in
the diagram to indicate that these latter subtrees are grouped together as a list of
operands. As noted above, the number of subtrees varies with the application; for
example, parsing the expression (+ 2 3 4) would result in the following application
AST:

name: +

Name
value: 3

Constant

Application

value: 2

Constant
value: 4

Constant

We have two other kinds of ASTs: conditional ASTs, which result from
parsing if expressions, and abstraction ASTs, which result from parsing lambda
expressions. The conditional AST resulting from the expression (if (= x 0)
1 (/ 5 x)) is diagrammed in Figure 10.1, and the abstraction AST resulting from
the expression (lambda (x) (* x x)) is diagrammed in Figure 10.2. Notice that
the abstraction AST contains the list of parameter names and has a single sub-AST,
corresponding to the body of the abstraction.

Recall that we are doing evaluation in a two-step process: first parse the expression,
then evaluate the resulting AST. Thus, if we use A as a name for the first application
AST shown above, the Scheme (not Micro-Scheme) expression (parse ’(+ 2 3))
has A as its value, and the Scheme expression (evaluate A) has 5 as its value.
Those are the two steps that the Micro-Scheme read-eval-print loop goes through
after reading in (+ 2 3): It first parses it into the AST A, and then evaluates the
AST A to get 5, which it writes back out.

What do we gain by using this two-step evaluation process? As we said at the
outset, part of the gain is the decoupling of the superficial syntax (parse’s concern)

name: =

Name

value: 0
Constant

Application

name: x
Name

name: /

Name

name: x
Name

Application

value: 5
Constant

value: 1

Constant

Conditional

Figure 10.1 Conditional AST parsed from (if (= x 0) 1 (/ 5 x))

10.3 Micro-Scheme 293

parameters: (x)

Abstraction

name: *

Name

name: x

Name

Application

name: x

Name

Figure 10.2 Abstraction AST parsed from (lambda (x) (* x x))

from the deeper structure (evaluate’s concern). Perhaps more important, however,
is the other advantage we mentioned: The tree structure of ASTs greatly facilitates
the evaluation process. ASTs are made to be evaluated. Now that we have seen AST
diagrams, we can understand why this is. First, each AST has an explicit type, which
controls how it is evaluated. For example, consider the two kinds of leaf nodes, name
ASTs and constant ASTs. Evaluating a constant AST is trivial, because we simply
return the value that it stores. Evaluating a name AST is slightly more complicated
but only requires looking up its name somewhere.

As for the more complicated ASTs, their recursive structure guides the evaluation.
Let’s just consider how we might evaluate a conditional AST, for example, the one
in Figure 10.1. In evaluating such an AST, the left child gets evaluated first, and
depending on whether its value is true or false, either the second or third child
is evaluated and its value is returned. The evaluation of the sub-ASTs is done
recursively; how precisely a given sub-AST is evaluated depends on which kind of
AST it is.

Before we start worrying about how to implement the data type of ASTs,
we’ll first write the procedure parse, assuming that we have all the constructors
(make-abstraction-ast, make-application-ast, etc.) we need.

The procedure parse will look almost the same as the procedure syntax-ok?
in that we need to look at the expression and see if it matches one of the forms of
the expressions in our language. The only difference is that instead of returning a
boolean indicating whether the syntax is okay, parse will return an AST. Here is
the code for parse, together with a new pattern/action list:

(define parse

(lambda (expression)

(define loop

(lambda (p/a-list)

(cond ((null? p/a-list)

(error "invalid expression" expression))

294 Chapter 10 Implementing Programming Languages

((matches? (pattern (car p/a-list)) expression)

(apply (action (car p/a-list))
(substitutions-in-to-match

(pattern (car p/a-list))

expression)))

(else (loop (cdr p/a-list)))))) ;end of loop

(cond ((name? expression) ;start of main parse procedure

(make-name-ast expression))

((or (number? expression)

(string? expression)

(boolean? expression))

(make-constant-ast expression))
((list? expression)

(loop micro-scheme-parsing-p/a-list))

(else (error "invalid expression" expression)))))

(define micro-scheme-parsing-p/a-list

(list

(make-pattern/action ’(if _ _ _)

(lambda (test if-true if-false)

(make-conditional-ast (parse test)

(parse if-true)
(parse if-false))))

(make-pattern/action ’(lambda _ _)

(lambda (parameters body)

(if (and (list? parameters)

((all-are name?) parameters))

(make-abstraction-ast parameters

(parse body))

(error "invalid expression"

(list ’lambda

parameters body)))))
(make-pattern/action ’(quote _)

(lambda (value)

(make-constant-ast value)))

(make-pattern/action ’(...) ; note that this *must* come last

(lambda (operator&operands)

(let ((asts (map parse

operator&operands)))

(make-application-ast (car asts)

(cdr asts)))))))

10.3 Micro-Scheme 295

Exercise 10.9

The action for ifs parses all three subexpressions into ASTs and passes the three
resulting ASTs to make-conditional-ast. Similarly, the action for lambda expres-
sions parses the body. However, it doesn’t parse the parameters. Why not?

Our next task, then, is to implement the AST data structure. How are we going
to do this? Although the various make-...-ast procedures make lots of different
kinds of ASTs (one for each kind of expression), we want to be able to apply one
operation to any one of them: evaluate. Thus, to implement ASTs we need to do
so in a way that accommodates generic operations. We choose to use procedural
representations, leading to the following definition of evaluate:

(define evaluate
(lambda (ast)
(ast ’evaluate)))

We’ll evaluate expressions much the way we showed in Chapter 1, using the sub-
stitution model, which means that when a procedure is applied to arguments, the
argument values are substituted into the procedure’s body where the parameters
appear, and then the result is evaluated. This process leads us to need an additional
generic operator for ASTs, one that substitutes a value for a name in an AST:

(define substitute-for-in
(lambda (value name ast)
((ast ’substitute-for) value name)))

Note that we’ve set this up so that when the AST is given the message
substitute-for, it replies with a procedure to apply to the value and the name.
That way ASTs can always expect to be given a single argument, the message
(evaluate or substitute-for), even though in one case there are two more
arguments to follow.

Let’s look at the evaluation process and see how substitution fits into it, using our
pictorial version of ASTs. We’ll introduce one minor new element into our pictures,
additional labels on the ASTs so that we can more easily refer to them. For example,
when we talk about the AST A2 in Figure 10.3, we mean the AST whose root node
has the naming label A2, in other words, the abstraction AST that is the full AST’s
first child. Suppose we parse the Micro-Scheme expression ((lambda (x) (* x
x)) (+ 2 3)), which results in the AST A1 shown in Figure 10.3. Now let’s look
in detail at what happens when we evaluate A1.

Because A1 is an application AST, evaluating it involves first evaluating the opera-
tor AST, A2, and the operand ASTs, of which there is only one, A7. Because A2 is an
abstraction AST, evaluating it creates an actual procedure; let’s call that procedure

296 Chapter 10 Implementing Programming Languages

A1:
Application

name: +

NameA8:
value: 3

ConstantA10:

A7:
Application

value: 2

ConstantA9:

name: *

NameA4:
name: x

NameA6:

A3:
Application

name: x

NameA5:

parameters : (x)

AbstractionA2:

Figure 10.3 The AST corresponding to ((lambda (x) (* x x)) (+ 2 3)).

P1 for reference. The procedure P1 has a parameter list that contains only x and
has the AST A3 as its body. Next we need to evaluate the operand, A7, to find out
what value P1 should be applied to. Because A7 is again an application AST, its
evaluation proceeds similarly to that of A1; we need to evaluate its operator AST, A8,
and its operand ASTs, A9 and A10. Because A8 is a name AST, evaluating it simply
involves looking up what the name + is a name for. The answer is that it is a name
for the built-in addition procedure, which we can call P2. Evaluating A9 and A10 is
even simpler, because they are constant ASTs. Each evaluates to the value shown
in the AST itself: 2 for A9 and 3 for A10. Now that A7’s operator and operands have
been evaluated, we can finish off evaluating A7 by applying P2 to 2 and 3. Doing
so produces 5, because P2 is the built-in addition procedure. Now we know that
A2’s value is the procedure P1 and that A7’s value is 5. Thus we can finish off the
evaluation of A1 by applying P1 to 5.

Because P1 is not a built-in procedure (unlike P2), but rather is one that the user
wrote in Micro-Scheme, we need to use the substitution model. We take P1’s body,
which is the AST A3, and replace each name AST that is an occurrence of the
parameter name, x, by a constant AST containing the argument value, 5. We can do
this task as (substitute-for-in 5 ’x A3). The result of this substitution is the
AST A11 shown in Figure 10.4. Notice that the AST A4, which was the operator AST

value: 5
A13:

A11:
Application

value: 5

ConstantA12:
A4

Constant

Figure 10.4 The AST resulting from (substitute-for-in 5 ’x A3). Note that the circled
A4 indicates that an already existing AST, A4, is being reused here.

10.3 Micro-Scheme 297

of A3, is also serving as the operator AST of our new A11, which is what the circled
A4 indicates. Also, notice that each place where the value 5 was substituted for the
name x, it was packaged into a constant AST; this resulted in ASTs A12 and A13.
This packaging is necessary because we can’t use a naked value where a sub-AST is
expected. Next we evaluate A11, which involves evaluating its operator AST, A4, and
its operand ASTs, A12 and A13. A4 evaluates to the built-in multiplication procedure,
and A12 and A13 each evaluate to 5. Finally, the built-in multiplication procedure
can be applied to 5 and 5, producing the final answer of 25. This process can be
shown in a diagram, as in Figure 10.5. Of course, this can also be abbreviated, for
example, by leaving out the details of how substituting 5 for x in A3 results in A11.

We can evaluate conditional ASTs similarly to what is shown in the foregoing, but
there is a bit of a twist because we first evaluate the test AST and then depending on
whether its value is true or false, evaluate one of the other two sub-ASTs to provide
the conditional AST’s value. This process is illustrated in Figure 10.6, which shows
the evaluation of an AST (A14) that results from parsing (if #f 1 2).

Exercise 10.10

Draw a diagram showing the AST resulting from parsing ((lambda (x) (if (>
x 0) x 0)) (- 0 3)). Now step through the process of evaluating that AST,
analogously to the above evaluations of A1 and A14.

Now we’re in a position to start writing the various AST constructors, each with its
own method of evaluating and substituting. We start with the simplest ASTs, names
and constants.

Names can be evaluated using the look-up-value procedure from Chapter 8;
substituting a value for a name in a name AST is either a nonevent or a real
substitution, depending on whether the two names are equal or not:

(define make-name-ast
(lambda (name)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate) (look-up-value name))

((equal? message ’substitute-for)
(lambda (value name-to-substitute-for)
(if (equal? name name-to-substitute-for)

(make-constant-ast value)
the-ast)))

(else (error "unknown operation on a name AST"
message)))))

the-ast))

298 Chapter 10 Implementing Programming Languages

evaluate A2
P1 (parameters x, body A3)

evaluate A8
P2 (addition)

evaluate A7

5

evaluate A9
2

evaluate A10
3

apply P2 to 2 and 3

substitute 5 for x in A4
A4

substitute 5 for x in A3

A11 (new appplication with A4 and A12 and A13)

substitute 5 for x in A5
A12 (new constant 5)

substitute 5 for x in A6
A13 (new constant 5)

evaluate A1

25

apply P1 to 5

evaluate A11

evaluate A4
P3 (multiplication)

evaluate A12
5

evaluate A13
5

apply P3 to 5 and 5

Figure 10.5 The process of evaluating the AST A1

10.3 Micro-Scheme 299

value: 2

Constant

value: 1

Constant

Conditional

value: #f

Constant A17:A16:A15:

A14:

evaluate A15
#f

evaluate A14

2

evaluate A17

Figure 10.6 The process of evaluating a conditional AST

Exercise 10.11

Extend look-up-value to include all your other favorite Scheme predefined names
so that they are available in Micro-Scheme as well.

Exercise 10.12

Further extend look-up-value so that some useful names are predefined in Micro-
Scheme that aren’t predefined in Scheme.

Constants are the ASTs that have the most straightforward implementation:

(define make-constant-ast
(lambda (value)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate) value)

((equal? message ’substitute-for)
(lambda (value name)
the-ast))

(else (error "unknown operation on a constant AST"
message)))))

the-ast))

The compound ASTs are much more interesting to implement, mostly because
evaluating them usually involves evaluating one or more of their components. Here
is the AST for conditional expressions (ifs):

(define make-conditional-ast
(lambda (test-ast if-true-ast if-false-ast)
(lambda (message)
(cond ((equal? message ’evaluate)

;;(continued)

300 Chapter 10 Implementing Programming Languages

(if (evaluate test-ast)
(evaluate if-true-ast)
(evaluate if-false-ast)))

((equal? message ’substitute-for)
(lambda (value name)
(make-conditional-ast
(substitute-for-in value name test-ast)
(substitute-for-in value name if-true-ast)
(substitute-for-in value name if-false-ast))))

(else (error "unknown operation on a conditional AST"
message))))))

This code follows a very simple pattern: Evaluating the conditional AST involves
evaluating component ASTs (first the test and then one of the others based on
the result of that first evaluation), and similarly, substituting into the AST involves
substituting into the constituent AST components.

Evaluating an application is similar to evaluating a conditional. First, we need
to evaluate the operator and each of the operands. Then we should apply the
operator’s value to the values of the operands, using the built-in procedure apply,
which assumes that an operator’s value is actually a Scheme procedure. Doing a
substitution on an application involves substituting into the operator and each of the
operands. Therefore, in Scheme, we have

(define make-application-ast
(lambda (operator-ast operand-asts)

(lambda (message)

(cond ((equal? message ’evaluate)

(let ((procedure (evaluate operator-ast))

(arguments (map evaluate operand-asts)))

(apply procedure arguments)))

((equal? message ’substitute-for)

(lambda (value name)

(make-application-ast

(substitute-for-in value name operator-ast)
(map (lambda (operand-ast)

(substitute-for-in value name operand-ast))

operand-asts))))

(else (error "unknown operation on an application AST"

message))))))

The most complicated ASTs are probably those for abstractions (lambda expres-
sions). As we mentioned previously, the result of evaluating an abstraction AST
should be an actual Scheme procedure; we’ll ignore that for now by assuming that

10.3 Micro-Scheme 301

we can write a procedure called make-procedure that will make this Scheme
procedure for us. The method for handling substitutions is worth looking at closely:

(define make-abstraction-ast

(lambda (parameters body-ast)

(define the-ast

(lambda (message)

(cond ((equal? message ’evaluate)

(make-procedure parameters body-ast))

((equal? message ’substitute-for)
(lambda (value name)

(if (member name parameters)

the-ast

(make-abstraction-ast

parameters

(substitute-for-in value name body-ast)))))

(else (error "unknown operation on an abstraction AST"

message)))))

the-ast))

You should have noticed that if a substitution is performed where the name being
substituted for is one of the parameters, the AST is returned unchanged. Only if the
name isn’t one of the parameters is the substitution done in the body. In other words,
if we substitute 3 for x in (lambda (x) (+ x y)), we get (lambda (x) (+ x y))
back unchanged, but if we substitute 3 for y in (lambda (x) (+ x y)), we get
(lambda (x) (+ x 3)). This rule is what is called only substituting for free oc-
currences of the name rather than also bound occurrences. This limited form of
substitution is the right thing to do because when we are evaluating an expression
like

((lambda (x)
(+ x

((lambda (x) (* x x))
5)))

3)

we want to substitute the 3 only for the outer x, not the inner one, which will later
have 5 substituted for it. That way we get 28 rather than 12.

Exercise 10.13

Draw the pictorial form of the AST that would result from parsing the above ex-
pression, and carefully step through its evaluation, showing how the value of 28 is

302 Chapter 10 Implementing Programming Languages

arrived at. As additional checks on your work, the parsing step should result in 13
ASTs (the main AST with 12 descendant ASTs below it), and six more ASTs should
be created in the course of the evaluation so that if you sequentially number the
ASTs, the last one will be numbered 19. Be sure you have enough space to work in;
it is also helpful to do this exercise with a partner so that you can catch each other’s
slips because it requires so much attention to detail.

All that is left at this point to have a working Micro-Scheme system is the
make-procedure procedure:

(define make-procedure
(lambda (parameters body-ast)
(lambda arguments
(define loop
(lambda (parameters arguments body-ast)
(cond ((null? parameters)

(if (null? arguments)
(evaluate body-ast)
(error "too many arguments")))

((null? arguments)
(error "too few arguments"))
(else
(loop (cdr parameters) (cdr arguments)

(substitute-for-in (car arguments)
(car parameters)
body-ast))))))

(loop parameters arguments body-ast))))

One minor new feature of Scheme is shown off in the above procedure, where
it has (lambda arguments ...) instead of the usual (lambda (...) ...). This
expression makes a procedure that will accept any number of arguments; they get
packaged together into a list, and that list is called arguments.

Exercise 10.14

Suppose we define (in Scheme, not Micro-Scheme) the procedure foo as follows:

(define foo (lambda x x))

What predefined Scheme procedure behaves exactly like foo?

10.4 Global Definitions: Mini-Scheme 303

Now that we have a working Micro-Scheme system, we can extend it either in
ways that make it more similar to Scheme or in ways that make it less similar.

Exercise 10.15

Add let expressions to Micro-Scheme, like those in Scheme.

Exercise 10.16

Add a with expression to Micro-Scheme that can be used like this:

;Enter Micro-Scheme expression:

(with x = (+ 2 1) compute (* x x))
;Micro-Scheme value: 9

The meaning is the same as (let ((x (+ 2 1))) (* x x)) in Scheme; unlike
let, only a single name and a single body expression are allowed.

Exercise 10.17

Add some other Scheme feature of your choice to Micro-Scheme.

Exercise 10.18

Add some other non-Scheme feature of your choice to Micro-Scheme.

10.4 Global Definitions: Turning Micro-Scheme into Mini-Scheme

Using the Micro-Scheme language you can make procedures and apply them to
arguments. For example, we can make a squaring procedure and apply it to 3 as
follows:

((lambda (x) (* x x))
3)

You can also give names to procedures, which will be easiest if you’ve added let
expressions to Micro-Scheme, as in Exercise 10.15. In that case, you can write

(let ((square (lambda (x) (* x x))))
(square 3))

304 Chapter 10 Implementing Programming Languages

You can even build up a succession of procedures, where later procedures make
use of earlier ones. For example,

(let ((square (lambda (x) (* x x))))
(let ((cylinder-volume (lambda (radius height)

(* (* 3.1415927 (square radius))
height))))

(cylinder-volume 5 4)))

However, all is not well. With the language as it stands, there is no easy way to
write recursive procedures (i.e., procedures that use themselves), which is a major
problem, considering all the use we’ve been making of recursive procedures.

To resolve this problem, we’ll add definitions to our language so that we can say
things like

(define factorial
(lambda (n)
(if (= n 1)

1
(* (factorial (- n 1))

n))))

To keep matters simple, we’ll stick with global or top-level definitions that are given
directly to the read-eval-print loop. We won’t add internal definitions nested inside
other procedures. Even with only global definitions, our language suddenly becomes
much more practical, so we’ll rename it Mini-Scheme to distinguish it from the
nearly useless Micro-Scheme.

To support global definitions and recursive procedures, we need to introduce the
notion of a global environment. A global environment is a collection of name/value
associations that reflects the global definitions that have been entered up to some
point. The read-eval-print loop starts out with an initial global environment that
contains the predefined names, such as +. Every time the read-eval-print loop is
given a new global definition, a new global environment is formed that reflects that
new definition as well as all prior ones. When the read-eval-print loop is given an
expression, it is evaluated in the current global environment rather than simply being
evaluated. We need to talk about evaluating in a global environment, rather than just
evaluating, because evaluating (factorial 5) is quite different after factorial
has been defined than it is before. Here is the Mini-Scheme read-eval-print loop that
reflects these considerations:

10.4 Global Definitions: Mini-Scheme 305

(define read-eval-print-loop
(lambda ()
(define loop
(lambda (global-environment)
(display ";Enter Mini-Scheme expr. or definition:")
(newline)
(let ((expression-or-definition (read)))
(if (definition? expression-or-definition)

(let ((name (definition-name
expression-or-definition))

(value (evaluate-in
(parse (definition-expression

expression-or-definition))
global-environment)))

(display ";Mini-scheme defined: ")
(write name)
(newline)
(loop (extend-global-environment-with-naming

global-environment
name value)))

(let ((value (evaluate-in
(parse expression-or-definition)
global-environment)))

(display ";Mini-scheme value: ")
(write value)
(newline)
(loop global-environment))))))

(loop (make-initial-global-environment))))

This new read-eval-print loop distinguishes between definitions and expressions using
the predicate definition? and selects out the two components of a definition using
definition-name and definition-expression. Before we move onto the more
meaty issues surrounding global environments, here are simple definitions of these
more superficial procedures:

(define definition?
(lambda (x)
(and (list? x)

(matches? ’(define _ _) x))))

(define definition-name cadr)

(define definition-expression caddr)

306 Chapter 10 Implementing Programming Languages

Returning to global environments, we now have a good start on con-
sidering them operationally, as an abstract data type. We have seen
that we need two constructors, make-initial-global-environment and
extend-global-environment-with-naming. The former produces a global en-
vironment that contains the predefined names, and the latter makes a new global
environment that is the same as a preexisting global environment except for one new
name/value association. What about selectors? We’ll need a look-up-value-in se-
lector, which when given a name and a global environment finds the value associated
with that name in that global environment.

To see how this selector winds up getting used, we need to consider evaluate-in,
which is the Mini-Scheme analog of Micro-Scheme’s evaluate:

(define evaluate-in
(lambda (ast global-environment)
((ast ’evaluate-in) global-environment)))

As before, the actual knowledge regarding how to evaluate is localized within each
kind of AST. The only difference is that now an evaluate-in operation, rather
than evaluate, is provided by each kind of AST. This new operation is applied to
the global environment in which the evaluation is to occur.

When we look at name ASTs, we see the key difference between the Mini-
Scheme evaluate-in operation, which looks up the name in the specified global
environment, and the old Micro-Scheme evaluate:

(define make-name-ast
(lambda (name)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate-in)

(lambda (global-environment)
(look-up-value-in name global-environment)))

((equal? message ’substitute-for)
(lambda (value name-to-substitute-for)
(if (equal? name name-to-substitute-for)

(make-constant-ast value)
the-ast)))

(else (error "unknown operation on a name AST"
message)))))

the-ast))

Constant ASTs can be implemented in a way that is very similar to Micro-Scheme,
because the global environment is completely irrelevant to their evaluation:

10.4 Global Definitions: Mini-Scheme 307

(define make-constant-ast
(lambda (value)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate-in)

(lambda (global-environment)
value))

((equal? message ’substitute-for)
(lambda (value name)
the-ast))

(else (error "unknown operation on a constant AST"
message)))))

the-ast))

For conditional ASTs (i.e., if expressions), the global environment information
is simply passed down to the evaluations of subexpression ASTs:

(define make-conditional-ast

(lambda (test-ast if-true-ast if-false-ast)

(lambda (message)

(cond ((equal? message ’evaluate-in)

(lambda (global-environment)

(if (evaluate-in test-ast global-environment)

(evaluate-in if-true-ast global-environment)

(evaluate-in if-false-ast global-environment))))
((equal? message ’substitute-for)

(lambda (value name)

(make-conditional-ast

(substitute-for-in value name test-ast)

(substitute-for-in value name if-true-ast)

(substitute-for-in value name if-false-ast))))

(else (error "unknown operation on a conditional AST"

message))))))

As with the constant ASTs, the global environment is irrelevant to the evaluation
of abstraction ASTs (i.e., lambda expressions):

(define make-abstraction-ast
(lambda (parameters body-ast)

(define the-ast

(lambda (message)

;;(continued)

308 Chapter 10 Implementing Programming Languages

(cond ((equal? message ’evaluate-in)

(lambda (global-environment)
(make-procedure parameters body-ast)))

((equal? message ’substitute-for)

(lambda (value name)

(if (member name parameters)

the-ast

(make-abstraction-ast

parameters

(substitute-for-in value name body-ast)))))

(else (error "unknown operation on an abstraction AST"

message)))))
the-ast))

The last AST to consider is the application AST. When a procedure is applied,
its body is evaluated (with appropriate parameter substitutions done) in the current
global environment. Thus, we need to keep track of that global environment. In
order to do this, we’ll pass in the global environment as an extra argument to the
Mini-Scheme procedure, before the real ones:

(define make-application-ast
(lambda (operator-ast operand-asts)
(lambda (message)
(cond ((equal? message ’evaluate-in)

(lambda (global-environment)
(let ((procedure (evaluate-in operator-ast

global-environment))
(arguments (map (lambda (ast)

(evaluate-in
ast
global-environment))

operand-asts)))
(apply procedure

(cons global-environment arguments)))))
((equal? message ’substitute-for)
(lambda (value name)
(make-application-ast
(substitute-for-in value name operator-ast)
;;(continued)

10.4 Global Definitions: Mini-Scheme 309

(map (lambda (operand-ast)
(substitute-for-in value

name
operand-ast))

operand-asts))))
(else (error "unknown operation on an application AST"

message))))))

Of course, we’ll have to change make-procedure so that it expects this extra first
argument and uses it appropriately:

(define make-procedure

(lambda (parameters body-ast)

(lambda global-environment&arguments

(let ((global-environment (car global-environment&arguments))

(arguments (cdr global-environment&arguments)))

(define loop

(lambda (parameters arguments body-ast)

(cond ((null? parameters)
(if (null? arguments)

(evaluate-in body-ast global-environment)

(error "too many arguments")))

((null? arguments)

(error "too few arguments"))

(else

(loop (cdr parameters) (cdr arguments)

(substitute-for-in (car arguments)

(car parameters)

body-ast))))))
(loop parameters arguments body-ast)))))

Exercise 10.19

Look up lambda expressions in the R4RS (available from the web site for
this book) and figure out how to rewrite make-procedure so that it has
(lambda (global-environment . arguments) ...) where the above version
has (lambda global-environment&arguments ...).

Finally, we need to implement global environments. Because global environments
are used to find a value when given a name, one simple implementation is to use
procedures. Thus a global environment is a procedure that takes a name as its
parameter and returns the corresponding value:

310 Chapter 10 Implementing Programming Languages

(define look-up-value-in
(lambda (name global-environment)
(global-environment name)))

(define make-initial-global-environment
(lambda ()
(lambda (name)

return the built-in procedure called name)))

(define extend-global-environment-with-naming
(lambda (old-environment name value)
(lambda (n)
(if (equal? n name)

value
(old-environment n)))))

As you can see, we still need to finish writing make-initial-global-
environment. The procedure it produces, for converting a name (such as +) to
a built-in procedure (such as the addition procedure), is very similar to look-up-
value. However, there is one important difference. In Micro-Scheme, we could
directly use the built-in procedures (such as addition) from normal Scheme; thus,
look-up-value could return these procedures, such as the Scheme procedure
called +. However, in Mini-Scheme this is no longer the case. In Mini-Scheme,
the evaluation of an application AST no longer applies the procedure to just its
arguments. Instead, it slips in the global environment as an extra argument before
the real ones. Thus, if we were to use normal Scheme’s + as Mini-Scheme’s +, when
we tried doing even something as simple as (+ 2 2), we’d get an error message
because the Scheme addition procedure would be applied to three arguments: a
global environment, the number 2, and the number 2 again.

To work around this problem, we’ll make a Mini-Scheme version of + and of all
the other built-in procedures. The Mini-Scheme version will simply ignore its first
argument, the global environment. We can make a Mini-Scheme version of any
Scheme procedure using the following converter:

(define make-mini-scheme-version-of
(lambda (procedure)

(lambda global-environment&arguments

(let ((global-environment (car global-environment&arguments))

(arguments (cdr global-environment&arguments)))

(apply procedure arguments)))))

For example, this procedure could be used as follows:

10.5 An Application: Adding Explanatory Output 311

(define ms+ (make-mini-scheme-version-of +))

(ms+ (make-initial-global-environment) 2 2)
4

Now, we can finish writing make-initial-global-environment:

(define make-initial-global-environment
(lambda ()
(let ((ms+ (make-mini-scheme-version-of +))

(ms- (make-mini-scheme-version-of -))
;; the rest get similarly converted in here
)

(lambda (name)
(cond ((equal? name ’+) ms+)

((equal? name ’-) ms-)
;; the rest get similarly selected in here
(else (error "Unrecognized name" name)))))))

Exercise 10.20

Flesh out make-initial-global-environment.

Exercise 10.21

Extend your solution of Exercise 10.19 to make-mini-scheme-version-of.

10.5 An Application: Adding Explanatory Output to Mini-Scheme

In this section, you’ll modify the Mini-Scheme implementation so that each ex-
pression being evaluated is displayed. You’ll then further modify the system so that
varying indentation is used to show whether an expression is being evaluated as the
main problem, a subproblem, a sub-subproblem, etc. You’ll also modify the system
to display the value resulting from each evaluation.

To display each expression as it is evaluated, we can modify the evaluate-in
procedure. At first you might think something like the following would work:

(define evaluate-in ; Warning: this version doesn’t work
(lambda (ast global-environment)
(display ";Mini-Scheme evaluating: ")
(write ast)
(newline)
((ast ’evaluate-in) global-environment)))

312 Chapter 10 Implementing Programming Languages

Unfortunately, this code displays the AST being evaluated, and what the user
would really like to see is the corresponding expression. Therefore, we’ll instead
define evaluate-in as follows:

(define evaluate-in
(lambda (ast global-environment)
(display ";Mini-Scheme evaluating: ")
(write (unparse ast))
(newline)
((ast ’evaluate-in) global-environment)))

This code uses a new generic operation on ASTs, unparse. This operation should
recreate the expression corresponding to an AST. The unparse procedure itself looks
much like any generic operation:

(define unparse
(lambda (ast)
(ast ’unparse)))

Now we have to modify each AST constructor to provide the unparse operation.
Here, for example is make-application-ast:

(define make-application-ast

(lambda (operator-ast operand-asts)

(lambda (message)

(cond ((equal? message ’unparse)

(cons (unparse operator-ast)

(map unparse operand-asts)))

((equal? message ’evaluate-in)

unchanged)
((equal? message ’substitute-for)

unchanged)
(else (error "unknown operation on an application AST"

message))))))

Exercise 10.22

Add the unparse operation to each of the other AST constructors. When you add
unparse to make-constant-ast, keep in mind that some constants will need to be
expressed as quotations. For example, a constant with the value 3 can be unparsed
into 3, but a constant that has the symbol x as its value will need to be unparsed

10.5 An Application: Adding Explanatory Output 313

into (quote x). You can look at the parse procedure to see what kinds of values
can serve as constant expressions without being wrapped in a quotation.

Exercise 10.23

Adding the unparse operation has rather unfortunately destroyed the separation
of concerns between parse and the AST types. It used to be that only parse
needed to know what each kind of expression looked like. In fact, most of the
knowledge regarding the superficial appearance of expressions was concentrated in
the parsing pattern/action list. Now that same knowledge is being duplicated in
the implementation of the unparse operation. Suggest some possible approaches
to recentralizing the knowledge of expression appearance. You need only outline
some options; actually implementing any good approach is likely to be somewhat
challenging.

At this point, you should be able to do evaluations (even fairly complex ones, like
(factorial 5)) and get a running stream of output from Mini-Scheme explaining
what it is evaluating. However, no distinction is made between evaluations that are
stages in the evolution of the main problem and those that are subproblems (or sub-
subproblems or . . .), which makes the output relatively hard to understand. We can
rectify this problem by replacing evaluate-in with evaluate-in-at, which takes
not only an expression to evaluate and a global environment to evaluate it in, but
also a subproblem nesting level at which to do the evaluation. The actual evaluation
is no different at one level than at another, but the explanatory output is indented
differently:

(define evaluate-in-at
(lambda (ast global-environment level)
(display ";Mini-Scheme evaluating:")
(display-times " " level)
(write (unparse ast))
(newline)
((ast ’evaluate-in-at) global-environment level)))

(define display-times
(lambda (output count)
(if (= count 0)

’done
(begin (display output)

(display-times output (- count 1))))))

314 Chapter 10 Implementing Programming Languages

The AST constructors also need to be modified to accommodate this new
evaluate-in-at operation. Here’s the new make-application-ast, which eval-
uates the operator and each operand at one subproblem nesting level deeper:

(define make-application-ast

(lambda (operator-ast operand-asts)

(lambda (message)
(cond ((equal? message ’unparse)

unchanged)
((equal? message ’evaluate-in-at)

(lambda (global-environment level)

(let ((procedure (evaluate-in-at operator-ast

global-environment

(+ level 1)))

(arguments (map (lambda (ast)

(evaluate-in-at

ast
global-environment

(+ level 1)))

operand-asts)))

(apply procedure

(cons global-environment

arguments)))))

((equal? message ’substitute-for)

unchanged)
(else (error "unknown operation on an application AST"

message))))))

Exercise 10.24

Modify the other AST constructors to support the evaluate-in-at operation. For
conditionals, the test should be evaluated one nesting level deeper than the overall
conditional, but the if-true or if-false part should be evaluated at the same level as
the overall conditional. (This distinction is because the value of the test is not the
value of the overall conditional, so it is a subproblem, but the value of the if-true or
if-false part is the value of the conditional, so whichever part is selected is simply a
later stage in the evolution of the same problem rather than being a subproblem.
This reasoning is illustrated in Figure 1.2 on page 14 and Figure 10.6.)

10.5 An Application: Adding Explanatory Output 315

Exercise 10.25

Modify the read-eval-print-loop so that it does its evaluations at subproblem
nesting level 1.

Exercise 10.26

Modify make-procedure so that the procedures it makes expect to receive an extra
level argument after the global environment argument, before the real arguments.
The procedure body (after substitutions) should then be evaluated at this level.
You’ll also need to change make-application-ast to supply this extra argument
and change make-mini-scheme-version-of to produce procedures that expect
(and ignore) this extra argument.

At this point, if you try doing some evaluations in Mini-Scheme, you’ll get output
like the following:

;Enter Mini-Scheme expr. or definition:

(+ (* 3 5) (* 6 7))
;Mini-Scheme evaluating: (+ (* 3 5) (* 6 7))

;Mini-Scheme evaluating: +

;Mini-Scheme evaluating: (* 3 5)

;Mini-Scheme evaluating: *

;Mini-Scheme evaluating: 3

;Mini-Scheme evaluating: 5

;Mini-Scheme evaluating: (* 6 7)

;Mini-Scheme evaluating: *

;Mini-Scheme evaluating: 6

;Mini-Scheme evaluating: 7

;Mini-scheme value: 57

On the positive side, it is now possible to see the various subproblem nesting levels.
For example, +, (* 3 5), and (* 6 7) are subproblems of the main problem, and
*, 3, 5, * (again), 6, and 7 are sub-subproblems. On the negative side, this output is
still lacking any indication of the values resulting from the various nested problems
(other than the final value shown for the main problem). For example, we can’t see
that the two multiplications produced 15 and 42 as their values. We can arrange
for the value produced by each evaluation to be displayed, indented to match the
“Mini-Scheme evaluating” line:

316 Chapter 10 Implementing Programming Languages

(define evaluate-in-at

(lambda (ast global-environment level)
(display ";Mini-Scheme evaluating:")

(display-times " " level)

(write (unparse ast))

(newline)

(let ((value ((ast ’evaluate-in-at) global-environment level)))

(display ";Mini-Scheme value :")

(display-times " " level)

(write value)

(newline)

value)))

With this change, we can see the values of the two multiplication subproblems as
well as the addition problem. However, as you can see below, the result is such a
muddled mess as to make it questionable whether we’ve made progress:

;Enter Mini-Scheme expr. or definition:

(+ (* 3 5) (* 6 7))
;Mini-Scheme evaluating: (+ (* 3 5) (* 6 7))

;Mini-Scheme evaluating: +

;Mini-Scheme value : #<procedure>

;Mini-Scheme evaluating: (* 3 5)

;Mini-Scheme evaluating: *

;Mini-Scheme value : #<procedure>

;Mini-Scheme evaluating: 3

;Mini-Scheme value : 3

;Mini-Scheme evaluating: 5

;Mini-Scheme value : 5

;Mini-Scheme value : 15

;Mini-Scheme evaluating: (* 6 7)

;Mini-Scheme evaluating: *

;Mini-Scheme value : #<procedure>

;Mini-Scheme evaluating: 6

;Mini-Scheme value : 6

;Mini-Scheme evaluating: 7

;Mini-Scheme value : 7

;Mini-Scheme value : 42

;Mini-Scheme value : 57

;Mini-scheme value: 57

10.5 An Application: Adding Explanatory Output 317

This explanatory output is so impenetrable that we clearly are going to have to
find a more visually comprehensible format. We’ll design an idealized version of
our format first, without regard to how we are going to actually produce that output.
While we are at it, we can also solve another problem with our existing output:
We don’t currently have any way of explicitly showing that an evaluation problem
is converted into another problem of the same level with the same value. Instead,
the new and old problems are treated independently, and the value is shown for
each (identically). For an iterative process, we’ll see the same value over and over
again. For example, if we computed the factorial of 5 iteratively, we’d get shown the
value 120 not only as our final value but also as the value of each of the equivalent
problems, such as 135!, 534!, 2033!, etc. Yet we’d really like to see each problem
converted into the next with a single answer at the bottom.

An example of our idealized format is shown in Figure 10.7; as you can see, it is
closely based on the diagrams we used to explain AST evaluation. Notice that we

+

#<procedure>

*

#<procedure>

(* 3 5)

15

3

3

5

5

*

#<procedure>

(* 6 7)

42

6

6

7

7

(+ (* 3 5) (* 6 7))

57

Figure 10.7 An idealized example of explanatory output

318 Chapter 10 Implementing Programming Languages

are still using indentation to show the subproblem nesting levels, but now we are
also using lines with arrowheads to show the connection between each expression
and its value. We can also use a similar format to show several expressions sharing
the same value, as in Figure 10.8. Here three expressions all share the value 9. The
first is an application expression, and the second results from it by substituting the

(lambda (x) (if (= x 0) 5 (* x x)))

#<procedure>

+

#<procedure>

(+ 2 1)

3

2

2

1

1

=

#<procedure>

(= 3 0)

#f

3

3

0

0

((lambda (x) (if (= x 0) 5 (* x x))) (+ 2 1))

9

(if (= 3 0) 5 (* 3 3))

(* 3 3)

*

#<procedure>

3

3

3

3

Figure 10.8 Another idealized example of explanatory output, with three equivalent problems
sharing the value 9

10.5 An Application: Adding Explanatory Output 319

argument value, 3, into the procedure body in place of the parameter name, x. The
resulting conditional expression, (if (= 3 0) 5 (* 3 3)), is in turn converted
into the third equivalent expression, (* 3 3), because the condition evaluates to a
false value.

If we want to approximate these diagrams, but do so using the normal Scheme
display procedure, which produces textual output, we’ll have to settle for using
characters to approximate the lines and arrowheads. Our two examples are shown in
this form in Figures 10.9 and 10.10.

+-< (+ (* 3 5) (* 6 7))
|
| +-< +
| +-> #<procedure>
|
| +-< (* 3 5)
| |
| | +-< *
| | +-> #<procedure>
| |
| | +-< 3
| | +-> 3
| |
| | +-< 5
| | +-> 5
| |
| +-> 15
|
| +-< (* 6 7)
| |
| | +-< *
| | +-> #<procedure>
| |
| | +-< 6
| | +-> 6
| |
| | +-< 7
| | +-> 7
| |
| +-> 42
|
+-> 57

Figure 10.9 Explanatory output with lines and arrowheads approximated using characters

320 Chapter 10 Implementing Programming Languages

+-< ((lambda (x) (if (= x 0) 5 (* x x))) (+ 2 1))
|
| +-< (lambda (x) (if (= x 0) 5 (* x x)))
| +-> #<procedure>
|
| +-< (+ 2 1)
| |
| | +-< +
| | +-> #<procedure>
| |
| | +-< 2
| | +-> 2
| |
| | +-< 1
| | +-> 1
| |
| +-> 3
|
+-- (if (= 3 0) 5 (* 3 3))
|
| +-< (= 3 0)
| |
| | +-< =
| | +-> #<procedure>
| |
| | +-< 3
| | +-> 3
| |
| | +-< 0
| | +-> 0
| |
| +-> #f
|
+-- (* 3 3)
|
| +-< *
| +-> #<procedure>
|
| +-< 3
| +-> 3
|
| +-< 3
| +-> 3
|
+-> 9

Figure 10.10 Second example of explanatory output using characters

10.5 An Application: Adding Explanatory Output 321

In the character-based version of the explanatory output, there are two kinds of
lines: lines that have something on them, like

| +-< (+ 2 1)

or

| +-> 3

or

+-- (* 3 3)

and those that are blank aside from the vertical connecting lines, such as

| |

We can use two procedures for producing these two kinds of line. For the ones that
have content, we need to specify the thing to write (which might be an expression
or a value), the “indicator” that shows what kind of line this is (< or > or -), and the
nesting level. For blank lines, only the nesting level is needed:

(define write-with-at
(lambda (thing indicator level)
(display-times "| " (- level 1))
(display "+-")
(display indicator)
(display " ")
(write thing)
(newline)))

(define blank-line-at
(lambda (level)
(display-times "| " level)
(newline)))

Now we have to insert the appropriate calls to these procedures into our evaluator.
We’ll need to differentiate between two kinds of evaluations: those that should have
lines with leftward pointing arrowheads (initial evaluations) and those that should
have arrowheadless connecting lines (additional evaluations sharing the same ulti-
mate value). The additional evaluations, with the arrowheadless line, originate from
two sources: evaluating the body of a procedure with the argument values sub-

322 Chapter 10 Implementing Programming Languages

stituted in and evaluating one or the other alternative of a conditional. Both are
shown in our example of evaluating ((lambda (x) (if (= x 0) 5 (* x x)))
(+ 2 1)). We can handle initial and additional evaluations differently by using two
separate procedures. For initial evaluations we’ll use our existing evaluate-in-at,
which provides the left-arrow line and also is responsible for the right-arrow line at
the end with the value. We’ll use a new procedure, evaluate-additional-in-at,
for the additional evaluations, which just “hook into” the existing evaluation’s line:

(define evaluate-in-at

(lambda (ast global-environment level)

(blank-line-at (- level 1))

(write-with-at (unparse ast) "<" level)

(let ((value ((ast ’evaluate-in-at) global-environment level)))

(write-with-at value ">" level)

value)))

(define evaluate-additional-in-at

(lambda (ast global-environment level)

(blank-line-at level)

(write-with-at (unparse ast) "-" level)

((ast ’evaluate-in-at) global-environment level)))

Exercise 10.27

Three calls to evaluate-in-at need to be changed to evaluate-additional-
in-at. Change them.

Exercise 10.28

To make the output look as shown, it is also necessary to provide a blank line before
the value of a built-in procedure. Put the appropriate call to blank-line-at into
the procedures generated by make-mini-scheme-version-of.

Exercise 10.29

When an application expression is evaluated, it might be desirable to explicitly show
that a procedure is being applied and what argument values it is being applied to,
after the operator and operands have been evaluated. Figure 10.11 shows an example
of this. Add this feature.

Review Problems 323

+

#<procedure>

*
#<procedure>

(* 3 5)

15

3

3

5

5

apply #<procedure> to 3 and 5

*

#<procedure>

(* 6 7)

42

6

6

7

7

apply #<procedure> to 6 and 7

(+ (* 3 5) (* 6 7))

57

apply #<procedure> to 15 and 42

Figure 10.11 Explanatory output with applications shown

Exercise 10.30

Decide what further improvements you’d like to have in the explanatory output and
make the necessary changes.

Review Problems

Exercise 10.31

Use EBNF to write a grammar for the language of all strings of one or more digits
that simultaneously meet both of the following requirements:

a. The digits alternate between even and odd, starting with either.
b. The string of digits is the same backward as forward (i.e., is palindromic).

324 Chapter 10 Implementing Programming Languages

Your grammar may define more than one syntactic category name (nonterminal),
but be sure to specify which one generates the language described above.

Exercise 10.32

Suppose the following Micro-Scheme expression is parsed:

((lambda (x) x) (if (+ 2 3) + 3))

a. Draw the AST that would result.
b. If this AST were evaluated, two of the ASTs it contains (as sub-ASTs or sub-sub-

ASTs, etc.) would not wind up getting evaluated. Indicate these two by circling
them, and explain for each of them why it doesn’t get evaluated.

Exercise 10.33

In Scheme, Micro-Scheme, and Mini-Scheme, it is an error to evaluate ((+ 2 3)
(* 5 7) 16) because this will try to apply 5 to 35 and 16, and 5 isn’t a procedure.
It would be possible to change the language so that instead of this construction being
an error, it would evaluate to the three-element list (5 35 16). That is, when the
“operator” subexpression of an “application” expression turns out not to evaluate to
a procedure, a list of that value and the “operand” values is produced.

a. Change Micro-Scheme or Mini-Scheme to have this new feature.
b. Argue that this is an improvement to the language.
c. Argue that it makes the language worse.

Exercise 10.34

Suppose that the Micro-Scheme make-conditional-ast were changed to the
following:

(define make-conditional-ast

(lambda (test-ast if-true-ast if-false-ast)

(lambda (message)

(cond ((equal? message ’evaluate)
(let ((test-value (evaluate test-ast))

(if-true-value (evaluate if-true-ast))

(if-false-value (evaluate if-false-ast)))

;;(continued)

Review Problems 325

(if test-value

if-true-value
if-false-value)))

((equal? message ’substitute-for)

(lambda (value name)

(make-conditional-ast

(substitute-for-in value name test-ast)

(substitute-for-in value name if-true-ast)

(substitute-for-in value name if-false-ast))))

(else (error "unknown operation on a conditional AST"

message))))))

a. Give an example of a conditional expression where this new version of
make-conditional-ast would produce an AST that evaluates to the same value
as the old version would.

b. Give an example of a conditional expression where evaluating the AST con-
structed by the new version would produce different results from evaluating the
AST produced by the old version.

c. Is this change a good idea or a bad one? Explain.

Exercise 10.35

Rewrite look-up-value to use a table of names and their corresponding values,
rather than a large cond.

Exercise 10.36

Replace the global-environment ADT implementation with an alternative represen-
tation based on a list of name/value pairs.

Exercise 10.37

Some programming languages have a so-called arithmetic-if expression that is
similar to Scheme’s if expression, except that instead of having a boolean test
condition and two other subexpressions (the if-true and if-false subexpressions), it
has a numerical test expression and three other subexpressions (the if-negative, the if-
zero, and the if-positive subexpressions). To evaluate an arithmetic-if expression,
you first evaluate the test expression, and then, depending upon whether that value is
negative, zero, or positive, the corresponding subexpression is evaluated. For example,
if you wanted to define an expt procedure that appropriately dealt with both positive
and negative integers, you could write

326 Chapter 10 Implementing Programming Languages

(define expt
(lambda (b n)
(arithmetic-if n

(/ 1 (expt b (- n)))
1
(* b (expt b (- n 1))))))

You will work through the details of adding arithmetic-if’s to Mini-Scheme
in this problem. To get you started, let’s choose to implement arithmetic-ifs
using a new AST constructor make-arithmetic-if-ast. The skeleton for
make-arithmetic-if-ast, with the important code left out, is as follows (note
that all subexpressions are passed in parsed):

(define make-arithmetic-if-ast

(lambda (test-value-ast if-neg-ast if-zero-ast if-pos-ast)
(lambda (message)

(cond ((equal? message ’evaluate-in)

(lambda (global-environment)

code for evaluate-in))

((equal? message ’substitute-for)

(lambda (value name)

code for substitute-for))

(else (error "unknown operation on a conditional AST"

message))))))

a. Add the code for evaluate-in.
b. Add the code for substitute-for.
c. Add the appropriate pattern/action to the micro-scheme-parsing-p/a-list.

Exercise 10.38

Suppose we add a new kind of expression to the Micro-Scheme language, the uncons
expression. The EBNF for it is as follows:

Review Problems 327

(uncons kexpressionl into knamel and knamel in kexpressionl)

This kind of expression is evaluated as follows:

The first kexpressionl is evaluated. Its value must be a pair (such as cons produces);
otherwise, an error is signaled.
The car of that pair is substituted for the first knamel, and the cdr for the second
knamel, in the second kexpressionl.
After these substitutions have been made, the second kexpressionl (as modified by
the substitutions) is then evaluated. Its value is the value of the overall uncons
expression.

For a simple (and stupid) example, the expression

(uncons (cons 3 5) into x and y in (+ x y))

would evaluate to 8.
Parsing an uncons expression involves parsing the constituent expressions, which

we can call the pair-expression and the body-expression. The resulting two ASTs,
which we can call the pair-ast and body-ast, get passed into the make-uncons-ast
constructor, along with the two names, which we can call the car-name and cdr-
name. Here is the outline of make-uncons-ast; write the two missing pieces of
code.

(define make-uncons-ast
(lambda (pair-ast body-ast car-name cdr-name)
(lambda (message)
(cond ((equal? message ’evaluate)

code for evaluate)

((equal? message ’substitute-for)
(lambda (value name)

code for substitute-for))

(else (error "unknown operation on a for AST"
message))))))

328 Chapter 10 Implementing Programming Languages

Chapter Inventory

Vocabulary

read-eval-print loop
Extended Backus-Naur Form (EBNF)
syntactic correctness
semantic error
keyword
grammar
syntactic category
production
nonterminal

terminal
abstraction
parsing
free
bound
global or top-level definition
global environment
subproblem nesting level
arithmetic if

Slogans

The universality principle

Abstract Data Types

abstract syntax tree (AST)

New Predefined Scheme Names

symbol?
string?

boolean?
write

New Scheme Syntax

quote
lambda expressions accepting variable
numbers of arguments

Scheme Names Defined in This Chapter

keyword?
name?
syntax-ok?
micro-scheme-syntax-ok?-p/a-list
read-eval-print-loop
parse
micro-scheme-parsing-p/a-list
evaluate
substitute-for-in
make-name-ast
make-constant-ast

make-conditional-ast
make-application-ast
make-abstraction-ast
make-procedure
definition?
definition-name
definition-expression
evaluate-in
look-up-value-in
make-initial-global-environment

Notes 329

extend-global-environment-
with-naming

make-mini-scheme-version-of
unparse
evaluate-in-at
display-times

write-with-at
blank-line-at
evaluate-additional-in-at
make-arithmetic-if-ast
make-uncons-ast

Sidebars

The Expressiveness of EBNF

Notes

We motivated Mini-Scheme with the remark that Micro-Scheme provides no easy
way to express recursive procedures. As an example of the not-so-easy ways of ex-
pressing recursion that are possible even in Micro-Scheme, we offer the following:

;; factorial-maker makes factorial when given factorial-maker
(let ((factorial-maker

(lambda (factorial-maker)
(lambda (n)
(if (= n 0)

1
(let ((factorial

(factorial-maker factorial-maker)))
(* (factorial (- n 1))

n)))))))
(let ((factorial (factorial-maker factorial-maker)))
(factorial 52)))

